Trace element analysis of 59 plastic consumer products

Montserrat Filella

December 2018

E GENÈVE

Montserrat Filella, Department F.-A. Forel, University of Geneva, Boulevard Carl-Vogt 66, CH-1205 Geneva, Switzerland email: montserrat.filella@unige.ch

1. Objective

According to the "Contrat de mandat de service" and an "Avenant no. 1" signed between the Université de Genève and the Association suisse des exploitants d'installations de valorisation des déchets (ASED), 59 plastic consumer products were provided by the ASED and analysed by the University of Geneva (Montserrat Filella).

2. Methods

Samples were analysed by energy-dispersive FP-XRF using a Niton XL3t 950 He GOLDD+. The Niton XL3t employs a miniature X-ray tube with a silver transmission anode that operates at up to 50 kV of high voltage and 200 μ A of current and is fitted with a geometrically optimised large area silicon drift detector to detect fluorescent X-rays from the sample.

The XRF instrument was employed nose-upwards in a collapsible bench-top accessory stand (Thermo Scientific SmartStand, with internal dimensions of 20 cm \times 20 cm \times 10 cm; PN 420-017) and was connected to a laptop computer via USB. Samples were placed on the stainless steel base plate of the accessory stand above the detector window or, for samples smaller than the 8 mm window diameter, on to a SpectraCertified Mylar polyester 3.6 µm film that was carefully positioned such that the sample lay centrally above the window. On closing the shield of the stand, measurements with appropriate thickness correction and collimation (3 mm or 8 mm beam width) were activated remotely through the laptop. For objects too large to be contained by the laboratory accessory stand, the XRF was used handheld.

The concentration of the chemical elements were determined in a 'plastics' mode through a standardless, fundamental parameters-based alpha coefficient correction model. This iterative approach accounts for background matrix effects by describing characteristic X-ray intensities using mathematical equations that tie together the physics of the interaction of X-rays with sample components, and has a wide dynamic range that is independent of the size and shape of the surface. Because plastics are composed of light elements that are weak absorbers and relatively strong scatterers of X-rays, below a critical thickness the measured intensity of characteristic X-rays will be

dependent on both the analyte concentration and the depth of the sample. In the plastics mode, the Niton XL3t incorporates a thickness correction algorithm down to 50 µm that employs a compensation for mass absorption based on Compton scatter so that variations in density are factored in. Although the corrective algorithm is embedded in the fundamental parameters code and inaccessible to the user, it has been empirically defined for a number of elements and in a variety of plastics elsewhere. In the present study, sample thickness was determined through the flattest or smoothest ('measurement') surface using 300 mm Allendale digital callipers, and to increase the effective depth and flatness of thin or hollow samples analysed in the accessory stand, items were cut (with scissors, pliers or a blade), folded or layered. The corrective algorithm was employed for all samples whose measured thickness was <30 mm.

Measurements were performed as follows. An initial, ~2-second matrix evaluation based on the measurement of characteristic chlorine peaks (and defining PVC as Cl N 15% by weight) was succeeded by an analysis time of between 60 and 200 s, comprising counting periods equally distributed between a low energy range (20 kV and 100 μ A) and main energy range (50 kV and 40 μ A). Spectra were quantified by fundamental parameter coefficients to yield elemental concentrations on a dry weight basis (in ppm) and with a counting error of 2 σ (95% confidence).

Polyethylene reference discs supplied by the manufacturer and certified for the elements of interest were analysed at the beginning and end of each one hour sample measurement session.

Indicative limits of detection are: 5-10 ppm for arsenic, bromine, chromium, lead and mercury; 50-100 ppm for antimony, cadmium, copper, nickel and zinc. However the detection limits in XRF depend on the sample thickness and are often much better than the ones mentioned here. In particular, the detection limit of cadmium can be less than 10 ppm for samples thicker than 13 mm by increasing the measuring time.

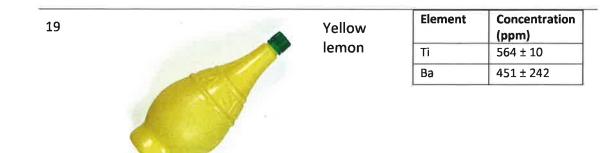
3. Results

The 50 objects initially sent by the ASED were analysed (total number of analysis: 63 since many of the objects were composite). The list and pictures of the objects as sent are shown in Annexes 1 and 2. Results are shown first ordered by object, accompanied by a picture of the corresponding object, as requested by the ASED, and, secondly, classified by chemical element. The original numbering has been kept. Later, a second set of 9 objects were sent. These results are shown separately.

Element Concentration 1 Black flip (ppm) flop Ti 542 ± 34 Sn 2219 ± 77 Element Concentration 2 Green shoe (ppm) Zn 5584 ± 148 48.8 ± 28.1 Cu Ti 16682 ± 322 Ва 1501 ± 304 Element Concentration 3 Blue bottle (ppm) Cu 49.0 ± 7.6 Ni 11.0 ± 5.8 ren an seam Ti 223 ± 9 Ba 399 ± 228 Element Concentration 4 Red bottle (ppm) Zn 153 ± 11 Ti 43.3 ± 4.5

3.1 Results classified by objects

)


)

)

5a,b		Red top of	Element	Concentration (ppm)
		squeeze	Ва	402 ± 243
		bottle (a)		
		Grey squeeze	Element	Concentration (ppm)
		bottle (b)	Cr	19.4 ± 4.5
6		Black food	Element	Concentration (ppm)
		tray	Zn	84.1 ± 9.6
8			Cr	34.1 ± 2.0
			Ti	65.7 ± 2.9
	E		Sb	276 ± 53
			Br	6.75 ± 4.28
7	0000000 0000000 0000000	Red rubber tray	Ni Ti	(ppm) 9.6 ± 6.2 55.4 ± 3.0
8		Red Lego	Element	Concentration (ppm)
	Charles and	box	Cu	11.7 ± 7.8
			Ti	23.0 ± 4.1
			Ва	483 ± 282
9	A S Y S S Y	Red ice	Element	Concentration (ppm)
	Carl of the Sector	cube tray	Cr	24.8 ± 4.9
	V-F-S-T-K-W-			

10a,b		Red pump	Element	Concentration (ppm)
		body (a)	Ті	271 ± 8
			Ва	1443 ± 240
			Sn	43.3 ± 28.5
		Red pump black hose	Element	Concentration (ppm)
		(b)	Cr	21.0 ± 3.1
			[
1		Yellow bag	Element	Concentration (ppm)
	ENERGY A		Pb	2049 ± 141
			Cr	333 ± 30
		1	Ti	406 ± 50
	A TRA MARK		Ва	2195 ± 759
	ALLE TONAL		Sb	245 ± 110
			Cd	561 ± 76
			Br	33.4 ± 14.3
.2	-	Red bag	Element	Concentration (ppm)
			Pb	4379 ± 122
			Zn	139 ± 26
			Cr	1050 ± 37
	LIKEsBAG		Ti	1816 ± 81
	LINE ODAU CH		Ва	1335 ± 274
	and the second se		Sb	5355 ± 128
	and a state		Sn	95.7 ± 43.3
3		Red	Element	Concentration (ppm)
		drainer	Ti	512 ± 20
4	E			

14		Red food	Element	Concentration (ppm)
		box	Zn	34.5 ± 6.0
			Ti	24.7 ± 3.3
15	C	Yellow chopping board		
16		Green bowl	Element	Concentration (ppm)
10				
			Ва	534 ± 266
			Ва	534 ± 266
		Black kettle	Ba	534 ± 266
		Black kettle lid		534 ± 266
			Element	534 ± 266 Concentration (ppm)
			Element	534 ± 266 Concentration (ppm) 28.2 ± 6.4
17			Element Zn Ti	534 ± 266 Concentration (ppm) 28.2 ± 6.4 284 ± 12
			Element Zn Ti Ba	534 ± 266 Concentration (ppm) 28.2 ± 6.4 284 ± 12 1094 ± 254
		lid Red tooth	Element Zn Ti Ba	534 ± 266 Concentration (ppm) 28.2 ± 6.4 284 ± 12 1094 ± 254 19.7 ± 3.1
17		lid	Element Zn Ti Ba Br	534 ± 266 Concentration (ppm) 28.2 ± 6.4 284 ± 12 1094 ± 254 19.7 ± 3.1

20	Green peg	Element	Concentration (ppm)
		Pb	1465 ± 38
		Zn	24.1 ± 5.1
		Cr	145 ± 4
		Ті	167 ± 7
	24	Ва	529 ± 233
		Sb	94 ± 34
		Br	24.2 ± 4.2

21		Green tube	Element	Concentration (ppm)
		from water	Zn	365 ± 16
		can	Cu	16.7 ± 7.5
			Ti	39.5 ± 4.9
	and the second sec		Ba	442 ± 228

)

)

)

)

ĺ)

)

)

)

 \bigcirc

 \bigcirc

)

 \bigcirc

 \mathbf{J}

 \bigcirc

22	Green	Element	Concentration (ppm)
	crocodile	Zn	98.1 ± 21.4
		Ti	511 ± 131
a star star		Ва	2024 ± 365

23	Pink ruler	Element	Concentration (ppm)
	and tenta	Pb	11.4 ± 4.4
	176	Zn	159 ± 10
		Ti	5876 ± 87
10 10 10 10 10 10 10 10 10 10 10 10 10 1		Ва	353 ± 223
100		<u>.</u>	

Grey	Element	Concentration (ppm)
hairbrush	Zn	86.8 ± 6.6
	Ті	215 ± 8

Element	Concentration (ppm)
Zn	103 ± 47
Ti	1738 ± 111
Ва	963 ±360
Sn	101 ± 59
Br	22.7 ± 11.6
	Zn Ti Ba Sn

Black	Element	Concentration (ppm)
hoover end	Zn	18.9 ± 8.4
piece	Ti	1208 ± 36
	Cd	1238 ± 63

Red flag	Element	Concentration (ppm)
	Zn	64.7 ± 9.3
	Ni	11.2 ± 7.4
	Ti	5005 ± 250

28	and and	Red	Element	Concentration (ppm)
		dinosaur	Zn	284 ± 31
			Ti	67 ± 10
				\^ \}*
29		White	Element	Concentration (ppm)
		football	Zn	557 ± 57
	NEN		Ti	33801 ± 723
	UIIVD		Ва	243 ± 121
		ie.	Sb	35.0 ± 19.7
30		White ruler	Element	Concentration (ppm)
			Pb	18.8 ± 8.1
			Zn	187 ± 20
			Ti	30588 ± 510
			Sb	83.2 ± 47.0
			I.	
31		Red doll	Element	Concentration (ppm)
	1 1 1	shape	Zn	258 ± 18
			Cu	18.0 ± 10.9
	AL DA TH		Cr	26.4 ± 5.7
			TÌ	36.3 ± 6.3
32		Blue hand	Element	Concentration (ppm)
		shape	Cu	56.4 ± 10.5
			Cr	19.4 ± 5.1
			Ti	672 ± 22
			1	

) D))) Э))

shape Cu Cr	19.8 ± 10.7
T	35.7 ± 6.2
Ti	226 ± 12.6
Ba	727 ± 285
Sn	65 ± 35

34

<u>;</u>	Element	Concentration (ppm)
	Ti	445 ± 15
	Ва	374 ±237

35

Yellow sand toy	Element	Concentration (ppm)	
	Ti	1145 ± 29	
	Ва	554 ± 300	

36a,b

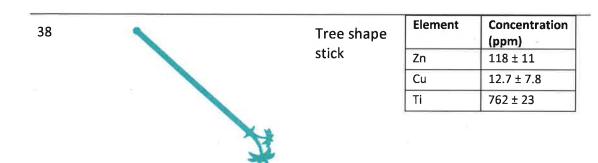
Head & Shoulders shampoo bottle (a)	Element	Concentration (ppm)
	Zn	986 ± 37
	Cu	50.0 ± 14.1
	Cr	42.2 ± 6.2
	Ti	9.54 ± 5.53

Head & Shoulders	Element	Concentration (ppm)
blue cap (b)	Cu	41.1 ± 10.2
	Cr	20.0 ± 4.0
	Ti	9.15 ± 3.41

balloon (a)InterferenceImage: Second constraintsImage: Second constr
Ba 880 ± 400 Ba 880 ± 400 Dark blue balloon (b) Element Concentration (ppm) Zn 1884 ± 73 Cu 1127 ± 53 Ti 9198 ± 216 Ti 9198 ± 216
Dark blue balloon (b) Element Concentration (ppm) Zn 1884 ± 73 Cu 1127 ± 53 Ti 9198 ± 216
balloon (b) Zn 1884 ± 73 Cu 1127 ± 53 Ti 9198 ± 216
Zn 1884 ± 73 Cu 1127 ± 53 Ti 9198 ± 216
Ti 9198 ± 216
Ba 811 ± 460
Green Element Conce

Yellow	
balloon	(d)

. .


Element	Concentration (ppm)
Zn	1323 ± 64
Ті	7408 ± 212

1504 ± 58 200 ± 22

9664 ± 217

Zn

Cu Ti

)

)

)

)

)

)

Э

0

)

 \bigcirc

 \bigcirc

)

)

Blue brush	Element	Concentration (ppm)
handle	Ti	6.71 ± 1.82
	Ва	348 ± 214

40	Blue spoon	Element	Concentration (ppm)
		Zn	86.8 ± 11.4
		Cr	28.6 ± 4.7
		Ва	705 ± 313

The second se	Grey box	Element	Concentration (ppm)
		Ti	779 ± 17
41b	Grey box cover	Element	Concentration (ppm)
		Ti	383 ± 12
		Ва	592 ± 302
42	Green	Element	Concentration (ppm)
A CONTRACTOR OF THE OWNER	garden bag	Zn	267 ± 45
DO IT+GARDEN		Cu	110 ± 48
MIGROS		Ті	29559 ± 1576
43	White bag	Element	Concentration (ppm)
		Zn	274 ± 69
		Ti	
oecoplan 100% Regeneration received and the received and			35808 ± 1603
	Yellow fork	Element	Concentration
	Yellow fork		Concentration (ppm)
	Yellow fork (a)	Element Ti	Concentration
	(a) Orange		Concentration (ppm) 758 ± 21 Concentration
	(a)	Ti	Concentration (ppm) 758 ± 21 Concentration (ppm)
	(a) Orange	Ti	Concentration (ppm) 758 ± 21 Concentration
	(a) Orange fork (b) Blue fork	Ti	Concentration (ppm) 758 ± 21 Concentration (ppm) 568 ± 17 Concentration
	(a) Orange fork (b)	Ti Element Ti	Concentration (ppm) 758 ± 21 Concentration (ppm) 568 ± 17

45a,b,c,d	Yellow	Element	Concentration (ppm)
	spoon (a)	Zn	43.6 ± 7.8
		Ni	17.9 ± 7.3
		Ti	1402 ± 35
		Ва	4730 ± 297
		Sb	172 ± 42
	Orange	Element	Concentration

spoon (b)

Element	Concentration (ppm)
Zn	65.1 ± 8.2
Ti	723 ± 22
Ва	3538 ± 275

Pink spoon (c)

Element	Concentration (ppm)
Zn	47.5 ± 8.0
Ti	1566 ± 35
Ва	1291 ± 293

Element

Concentration

(ppm)

Green spoon (d)

Coat

Flags

hanger

	46	

)

)

)

)

)

D

)

Ū

)

)

 \bigcirc

O

 \bigcirc

0

 \bigcirc

)

)

40				
	it.	G		
47			 212	1

Zn	79.5 ± 8.7
Cu	50.6 ± 8.2
Ti	667 ± 17
Ва	510 ± 256
Element	Concentration
Lieniene	concentration
Lienient	(ppm)
Zn	
-	(ppm)
Zn	(ppm) 150 ± 14

Element	Concentration (ppm)
Zn	3139 ± 212
Cr	50.9 ± 12.8
Ti	18268 ± 801

48a,b		Cindy	Element	Concentration (ppm)
	0000	phone light	Zn	78.6 ± 7.0
		pink (a)	Ti	4.57 ± 2.34
			h	2
	7	Cindy phone dark	Element	Concentration (ppm)
		pink (b)	Zn	58.2 ±8.3
			Ti	306 ± 12
49		White	Element	Concentration (ppm)
		zipped	Zn	71.1 ± 32.2
		purse	Ti	38315 ± 1161
	the state of the state of the		Ва	1051 ± 538
			3 <u></u>	
50		Green pen	Element	Concentration (ppm)
	STABILO BOSS		Cu	11.8 ± 3.2
			Ti	3159 ± 31

3.2 Results classified by chemical elements

Concentration values are shown for all objects that contain a given element, in decreasing order. Two elements have not been found in any object: arsenic and mercury. Values for two elements whose presence is widespread in plastics, but that are not included in the contract, are shown in graphical form at the end of the section (barium and titanium). The total number of analysis is 63.

Antimony

Sample #	Sample description	Concentration (ppm)
12	Red bag	5355 ± 128
6	Black food tray	276 ± 53
11	Yellow bag	245 ± 110
45a	Yellow spoon	172 ± 42
20	Green peg	94 ± 34
30	White ruler	* 83.2 ± 47.0
29	White football PVC	35.0 ± 19.7

See Section 4 for meaning of orange shading.

Bromine

Sample #	Sample description	Concentration (ppm)
11	Yellow bag	33.4 ± 14.3
20	Green peg	24.2 ± 4.2
25	Blue bag	22.7 ± 11.6
46	Coat hanger	8.08 ± 3.23
6	Black food tray	6.75 ± 4.28

See Section 4 for meaning of orange shading.

Cadmium

Sample #	Sample description	Concentration (ppm)
26	Black hoover end piece	1238 ± 63
11	Yellow bag	561 ± 76

Chromium

Sample #	Sample description	Concentration (ppm)
12	Red bag	1050 ± 37
11	Yellow bag	333 ± 30
20	Green peg	145 ± 4
47	Flags	50.9 ± 12.8
36a	Head & Shoulders bottle	42.2 ± 6.2
33	Red foot shape	35.7 ± 6.2
6	Black food tray	34.1 ± 2.0
40	Blue spoon	28.7 ± 4.7
31	Red doll shape	26.4 ± 5.7
9	Red ice cube tray	24.8 ± 4.9
10b	Red pump black hose	21.0 ± 3.1
36b	Head & Shoulders blue cap	20.0 ± 4.0
5b	Grey squeeze bottle	19.4 ± 4.5
32	Blue hand shape	19.4 ± 5.1

See Section 4 for meaning of orange shading.

Copper

Sample #	Sample description	Concentration (ppm)
37b	Dark blue balloon	1127 ± 53
37c	Green balloon	200 ± 22
42	Green garden bag	110 ± 48
32	Blue hand shape	56.4 ± 10.5
45d	Green spoon	50.6 ± 8.2
36a	Head & Shoulders bottle	50.0 ± 14.1
3	Blue bottle	49.0 ± 7.6
2	Green shoe	48.8 ± 28.1
36b	Head & Shoulders blue cap	41.1 ± 10.2
33	Red foot shape	19.8 ± 10.7
31	Red doll shape	18.0 ± 10.9
21	Green tube from water can	16.7 ± 7.5
46	Coat hanger	16.3 ± 9.6
38	Tree shape stick	12.7 ± 7.8
50	Green pen	11.8 ± 3.2
8	Red Lego box	11.7 ± 7.8

Lead

Sample #	Sample description	Concentration (ppm)
12	Red bag	4379 ± 122
11	Yellow bag	2049 ± 141
20	Green peg	1465 ± 38
30	White ruler	18.8 ± 8.1
23	Pink ruler	11.4 ± 4.4

See Section 4 for meaning of orange shading.

Nickel

Sample #	Sample description	Concentration (ppm)
45a	Yellow spoon	17.9 ± 7.3
27	Red flag	11.2 ± 7.4
3	Blue bottle	11.0 ± 5.8
7	Red rubber tray	9.6 ± 6.2

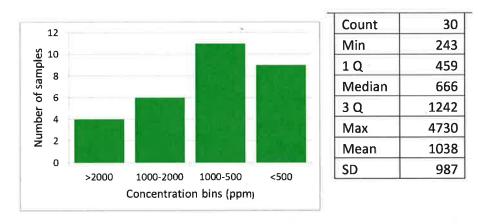
Zinc

)

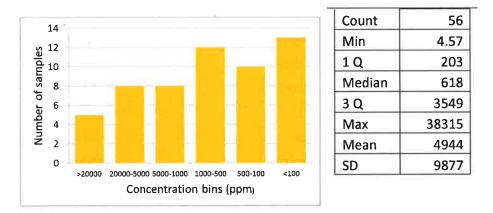
)

D

)


)

0


)

Sample #	Sample description	Concentration (ppm)
2	Green shoe	5584 ± 148
47	Flags	3139 ± 212
37a	Red balloon	1366 ± 52
37b	Dark blue balloon	1884 ± 73
37c	Green balloon	1504 ± 58
37d	Yellow balloon	1323 ± 64
36	Head and shoulders shampoo	986 ± 37
29	White football	557 ± 57
21	Green tube from water can	365 ± 16
28	Red dinosaur	284 ± 31
43	White bag	274 ± 69
42	Green garden bag	267 ± 45
31	Red doll shape	258 ± 18
30	White ruler	187 ± 20
23	Pink ruler	159 ± 10
4	Red bottle	153 ± 11
46	Coat hanger	150 ± 14
12	Red bag	139 ± 26
38	Tree shape stick	118 ± 11
25	Blue bag	103 ± 47
22	Green crocodile	98.1 ± 21.4
24	Grey hairbrush	86.8 ± 6.6
6	Black food tray	84.1 ± 9.6
45d	Green spoon	79.5 ± 8.7
48a	Cindy phone light pink	78.6 ± 7.0
49	White zipped purse	71.1 ± 32.2
45b	Orange spoon	65.1 ± 8.2
27	Red flag	64.7 ± 9.3
18b	Cndy phone dark pink	58.2 ±8.3
15a	Yellow spoon	43.6 ± 7.8
45c	Pink spoon	47.5 ± 8.0
14	Red food box	34.5 ± 6.0
17	Black kettle lid	28.2 ± 6.4
20	Green peg	24.1 ± 5.1
26	Black hoover end piece	18.9 ± 8.4

Barium (all concentrations in ppm)

Titanium (all concentrations in ppm)

3.3 Results of FREITAG bags

The nine FREITAG bags sent by the ASED in November 2018 were analysed (total number of analysis: 17 since some of the bags showed more than one colour). The samples are numbered A to I.

	Element	Concentration (ppm)
	Pb	3452 ± 250
	Zn	171 ± 85
	Cr	795 ± 77
I I I MARKED ISTAC	Ва	12713 ± 882
and the second second second second	Sb	6106 ± 330
	Sn	124 ± 69

	THE ST
	10
5 R.	

Blue

Element	Concentration (ppm)
Pb	1322 ± 132
Zn	139 ± 78
Cr	181 ± 41
Cu	797 ± 142
Ti	2176 ± 201
Ва	1574 ± 465
Sb	5545 ± 299

Yellow

Element	Concentration (ppm)
Pb	900 ± 86
Zn	142 ± 53
Cr	51.7 ± 20.0
Cu	455 ± 88
Ti	19706 ± 736
Ва	707 ± 447
Sb	2152 ± 147

С	
	Constants (
	A second s

Blue

Yellow

White

Element	Concentration
	(ppm)
Zn	163 ± 67
Cu	131 ± 78
Ti	11189 ± 563
Ва	1198 ± 466
Sb	8136 ± 384
Sn	132 ± 65

Element	Concentration (ppm)
Zn	287 ± 73
Ti	10427 ± 527
Ва	1193 ± 575
Sb	2763 ± 198

D

В

1

)

)

 \bigcirc

 \bigcirc

)

 \bigcirc

 \bigcirc

Element	Concentration (ppm)
Zn	166 ± 78
Ti	11981 ± 660
Ва	1314 ± 500
Sb	8362 ± 432
Sn	166 ± 72

Element	Concentration (ppm)
Zn	150 ± 66
Ti	29377 ± 3314
Ва	1551 ± 615
Sb	9686 ± 489
EL.	
Element	Concentration
Element	(ppm)
Zn	
	(ppm)
Zn	(ppm) 243 ± 71

Е

F

G

Н

Blue

Element	Concentration (ppm)
Pb	2367 ± 144
Zn	108 ± 46
Cr	700 ± 49
Ti	130 ± 60
Ва	768 ± 361
Sb	1452 ± 114

White

Element	Concentration (ppm)
Pb	3806 ± 273
Zn	166 ± 72
TÌ	114332 ± 4507
Sb	6186 ± 316
Br	40.8 ± 23.6

Element	Concentration (ppm)
Zn	104 ± 49
Ti	1425 ± 240
Sb	6455 ± 287
Sn	106 ± 55

Purple

Element	Concentration (ppm)
Zn	181 ± 74
Ti	11717 ± 820
Ва	7350 ± 840
Sb	9974 ± 526
As	55.6 ± 32.4

		White	Element	Concentration (ppm)
		Zn	91.8 ± 48.7	
			ті	9741 ± 1364
			Ва	817 ± 384
394 L		Sb	4011 ± 204	
			As	35.6 ± 19.4
	Red	Element	Concentration (ppm)	
	A Company of the second se		Pb	50.1 ± 23.1
			Zn	178 ± 62
		Ва	1043 ± 422	
		Sb	1855 ± 139	
		Br	18.4 ± 11.0	
	Silver	Element	Concentration (ppm)	
		Pb	92.3 ± 27.0	
		Zn	127 ± 45	
		Ti	167 ± 55	
		Ва	1102 ± 505	
		Sb	5922 ± 274	
		Sn	101 ± 67	
		Br	155 ± 20	

4. Discussion

4.1 The initial 50 objects

Although the number of objects analysed is too low to be able to draw general conclusions about the presence of potential toxic elements in Swiss plastic consumer products, some aspects deserve to be mentioned:

- Most of the samples analysed do not contain hazardous elements.
- A limited number of objects appear to be of clear concern: 11 (yellow bag), 12 (red bag), 20 (green peg) and 26 (black hoover end piece).
- All samples (except one, 15, yellow chopping board) contain one or more of the chemical elements analysed. In particular, the presence of titanium, zinc and barium is widespread. Even if the extensive presence of these chemical elements

in plastics might be of no immediate toxicological concern, it has clear implications when considering their possible recycling.

- Two noxious elements are entirely absent in these samples: arsenic and mercury.
- The simultaneous presence of antimony and bromine in some objects (highlighted in orange in the respective tables), where no need for the presence of flame retardants is clear, points to plastic illegally recycled from WEEE (Waste electronic and electric equipment). The case is well documented in the case of black one-use trays like sample 6 (A. Turner and M. Filella, Bromine in plastic consumer products – Evidence for the widespread recycling of electronic waste. Sci. Total Env. 601–602 (2017) 374–379).
- The high concentration of lead in three objects: 12 (red bag), 11 (yellow bag) and 20 (green peg) needs to be mentioned, particularly because they are not legacy objects but products available now in the market. Since these three samples also contain the highest chromium concentrations, it can be speculated that they contain lead chromate (i.e., Cr(VI)) as a pigment, alone or in combination with other substances.
- The presence of some chemical elements in manufactured products is regulated by the Chemical Risk Reduction Ordinance related to the Use for Certain Particularly Dangerous Substances (OCRR), "which manufacturers and traders are required to comply with regarding the manufacture and placing in the market of certain substances, preparations and articles". The chemical elements mentioned are arsenic, cadmium, chromium, organostannic compounds, lead, mercury and some brominated compounds. The presence of a given element and the concentration allowed depends on the use of the manufactured product. There are other more restrictive regulations concerning particular objects such as toys (817.023.11; Ordonnance sur les jouets, OSJo; Spielzeugverordnung, VSS; Ordinanza sui giocattoli, OSG) or the objects in contact with food (817.023.21; Ordonnance du DFI sur les matériaux et objets destinés à entrer en contact avec les denrées alimentaires; Verordnung des EDI über Materialien und Gegenstände, die dazu bestimmt sind, mit Lebensmitteln in Berührung zu kommen; Ordinanza del DFI sui materiali e gli oggetti destinati a entrare in contatto con le derrate *alimentari*) that might apply to some of the objects considered here.

4.2 The FREITAG bags

The trace element contents of nine FREITAG bags was measured. According to the firm webpage, these bags are produced from used truck tarp. The results obtained show that a third of the analysed bags (3) contained high amounts of lead, one of them small concentrations of arsenic and another one of lead. They all have high concentrations of antimony.

4.3 General considerations

According to the results obtained in this study, the following recommendations are made:

- The analysis of other plastic consumer products available in Switzerland, with a focus on the categories more prone to contain problematic elements.
- The preparation of a summary of the regulated values in Switzerland and in the European Union for different uses (e.g., toys, plastic in contact with food, etc.).

ANNEX 1. List of products and pictures sent by ASED.

ASED - UNIGE: Liste des objets plastiques à analyser

)

N°	Description	Lieu d'achat/Provenance / Année
1	Flip-flop noir	?
2	Imitation crocs vert	Landi/made in China/ 2018
3	Gourde bleue	made in CH/ 2015
4	Gourde Camelbag rouge	made in China/ 2014
5	Gourde grise	made in CH/ 2015
6	Barquette alimentaire noire	Migros/made in ?/2017
7	Forme cupcake rouge silicone	Migros/made in Italy/2018
8	Lego lunchbox	Migros/made in Poland/ 2018
9	Forme pour faire glaçons rouge	Migros/made in CH/ 2018
10	Pompe à air rouge	?
11	LikeaBag jaune	made in India/2007
12	Likeabag rouge	made in EU/2017
13	Corbeille rouge foncée pour égoutter fruits	Migros/made in China/2018
14	Box alimentaire rouge	Migros/made in New Zealand/ 2018
15	Planche à découper, jaune	?/2008
16	Bol alimentaire vert	Migros/made in China/2015
17	Couvercle bouilloire noir	Landi/made in China/2018
18	Brosse à dent enfant rouge	Migros/made in CH/ 2018
19	Flacon jus de citron jaune à couvercle vert	Coop/made in ?/2018
20	Pince à linge verte	Landi/made in ?/ 2016
21	Arrosoir vert	?/ 2008
22	Crocodile gonflable vert	Made in China/ /2011
23	Règle TRIDEL rouge foncée	?/2014
24	Brosse à cheveux noire	Migros/?/2008
25	Saccoche Musto	Made in China/ 2015
26	Embout aspirateur noir	Miele/?/2002
27	Drapeaux suisses	Migros/made in China/2018
28	Jouet dragon rouge	Tiger of Copenhagen/made in China/2018
29	Ballon foot	?/2018
30	Kutch Faber Castell	Made in Germany/1998
31	Forme jouet sable rouge (fille)	made in Germany/2018

ASED - UNIGE	: Liste des	objets	plastiques	à analyser
--------------	-------------	--------	------------	------------

N°	Description	Lieu d'achat/Provenance / Année
32	Forme jouet sable bleue (main)	made in China/2018
33	Forme jouet sable rouge (pied)	made in China/2018
34	Rateau sable jaune	made in Denmark/2018
35	Forme jouet sable jaune (phare)	made in Germany/2018
36	Flacon shampooing, 25% mat. Recycée	?/2018
37	Ballons gonfables multicolores	made in Italy/2018
38	Cocktail-stick vert	made in China/2018
39	Balayette bleue	?/1995
40	Cuillière pour glace, bleue	?/2018
41	Box rangement grise (plastique recyclé)	Migros/made in CH/ 2018
42	Sac plastique Migros (recycling)	Migros/ 2018
43	Sac plastique Coop (recycling)	Coop/2018
44	Fourchettes one way multicouleur	Migros/made in CH/ 2018
45	Cuillières one way multicouleur	Migros/made in CH/ 2018
46	Cintre noir	?
47	Drapeaux suisses divers	?/1998
48	Jouet natel rose-rouge	2013
49	Saccoche pour cosmétiques blanche/verte	made in China/2018
50	Stabilo vert	made in ?/2017

